Putnam 1998 (Problems and Solutions)

Al. A right circular cone has base of radius 1 and height 3. A cube is inscribed
in the cone so that one face of the cube is contained in the base of the cone.
What is the side-length of the cube.

Solution. Consider the cross section obtained by slicing vertically by a plane
that contains a diagonal of the base of the cube. We obtain a rectangle of height
s =side-length of the cube and width v/2s. By similar triangles
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A2. Tetshbe any arc of the unit circle lying entirely in the first quadrant. Let
A be the area of the region lying below s and above the z-axis and let B be the
area of the region lying to the right of the y-axis and to the left of s. Prove that
A+ B depends only on the arc length of s and not on the position of s.

Solution. Let s run from 67 to 03. Then

cos 01 01
A :/ Vl—xzdx:f/ sin? 0 df

0s 02 02
sin 65 02
B = \/1—y2dy:/ cos? 0 df
sin 01 01

Note that
aiel(A+B):—sin2917008291:fléA+B:—91+f(92)
while
59-(A+B) =sin?0 +cos?fp =1 = A+ B =01+ g(6:).
Hence, since A + B = 0 when 6, = 6,

A+ B=0,—-0,+C =05 —0,.

A3. Let f be a real function on the real line with continuous third derivative.
Prove that there exists a point a such that

fla)-f'(a)- f"(a) - f" (a) 2 0.



Solution. Assume otherwise. Then

f@) - f () f"(z) " () <0.

In particular, each of the factors is never zero. By replacing f (z) by —
necessary, we may assume that f (z) > 0, and by replacing f (z) by f(—z) if
necessary, we may assume that f’ (z) > 0. There are two cases:

Case 1: f” (z) > 0 and f" (x) <O0.

Since f"’ (x) < 0, the graph of f’ (z) is concave down and hence the graph
of f'(x) lies below its tangent line at z = 0. Thus,

—f"(0)
f(0)

F@) <O+ )z and f (

Case 2: " (z) <0 and f" (z) > 0.
Since f” () < 0, the graph of f () is concave down and hence the graph of
f (x) lies below its tangent line at 2 = 0. Thus,

f(0)
f7(0)
A4, TLet Ay = 0 and let Ay = 1. For n > 2, the number A, is defined by
concatenating the decimal expansions of A,,_1 and A,,_» from left to right. For
example A3 = A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, and so
forth. Determine all n such that 11 divides A,,.

) < 0 (contradiction).

f@) < fO)+f(0)x and f < ) < 0 (contradiction).

Solution. Since 10" = (—1)" mod 11, an integer is divisible by 11 iff the alter-
nating sum of its digits (from right to left so that the first term is positive) is 0
mod 11. Let e, be the alternating sum of the digits mod 11 of A,, from right to
left, and let F,, be the number dl%lts in A,. Of course F, is just the Fibonacci
sequence. Note that ;10 = (—1)"" ep41 + €. We have Fy 10 = F,, 411 + F,, and
Fy =1, and F;, = 1, we see that F is even iff n is divisible by 3. We have (all
mod 11)

Fn
Cn+2 = (_1) €ntr1 téen
Fa
espt3 = (1) espin +esppr = —€3pq2 + 3041
Fag
3kta = (1) egpys + e3pp2 = —€3p43 + €3p42 = — (—€3p42 + €3k41 3k+2
e (—1)"* e +e e +e (—e +espt1) +e

= —eggp+1 +2e3542

Fan
esk+s = (—1)7°"" espia + €363 = €3pqa + 3643 = (—€3p41 + 2e3542) + (—€3642 + €3141)
= €3k+2
J2
eskre = (—1)"*" espqs + e3k44 = —€3k44+5 + €3k4a = —€3kp2 + (—€364+1 + 2€3k42)
= e3k+2 — €3k+1
J2
eskrr = (—1)"""" espi6 + €3645 = —€3k+6 + €3k+5 = — (€342 — €3k+1) + €3k+2 = €3%41
P
€3k+8 (—1)7%** 3447 + €3k+6 = €3k+7 + €3k+6 = €3kt1 T €3k+2 — €3k41 = €3442
Fan
eskro = (—1)7°"*7espis + e3p47 = —€3k48 + €3k47 = —€3k42 + €3411 = €343



Thus, e, is periodic of period 6. Now
e1r = 0,ea=1e3=—ea+e1=—-1,
eq = —e1+2e=2e5 =e2=1,e6=e3—e1 =1.

Thus, e, is divisible by 11 iff n = 1 mod 6.

AD. Tet F be a finite collection of open disks in R? whose union contains a
set £ C R2. Prove that there is a pairwise disjoint collection D1, ..., D,, in F
such that
n

Jsp; 2 E.

j=1
Here, if D is the disc of radius r and center P, then 3D is the disc of radius 3r
and center P.

Solution. Note that if D and D’ are open disks of radius r and 7/, with r < 7/,
then DN D' # ¢ = 3D’ O D. Starting with a largest disk, color it (say, red),
and remove the disks which intersect it. The 3-fold enlargement of the colored
disk together with the remaining disks will still cover E, by the above. Then
color a largest remaining uncolored disk, and remove the remaining uncolored
disks which intersect it. Continuing, the process eventually stops, since there
are a finite number of disks. Moreover, at each stage the 3-fold enlargements of
the colored disks and the remaining uncolored disks cover E. At the end of the
process, no uncolored disks remain, and the 3-fold enlargements of the colored
disks cover E. The colored disks are pairwise disjoint by construction.

AG. Let A, B and C denote distinct points with integer coordinates in R2.
Prove that if

(|AB| +|BC|)* < 8 -[ABC] +1
then A, B, C are three vertices of a square. Here |XY| is the length of the
segment XY and [ABC] is the area of triangle ABC.

Solution. We have [ABC| = £ |AB| |BC|sin, where 6 is the angle of triangle
ABC at vertex B. Thus, 4-[ABC] < 2|AB| |BC| with equality only if § = 90°.
Also 2|AB| |BC| < |ABJ? + |BC|? with equality only if |[AB| = |BC|, since
0 < (|AB| - |BC|)*. Hence,

8- [ABC] < 4-[ABC]+2]|AB| |BC]|
< 4.[ABC]+ |AB|’ +|BC|?
< 2|AB| |BC|+|AB|* + |BC|?
= (|AB|+|BC|)* <8-[ABC] +1
The intermediate expression 4 - [ABC] + |AB> + |BC|? is an integer, since

2-[ABC] is a determinant of a 2 X 2 matrix with integer coeflicients. Thus, we
have all equalities, and § = 90° and |AB| = |BC|.



B1. Find the minimum value of

(+1/2)° — (2 +1/2%) —
(x+1/2)° + (23 + 1/23)

Solution. We have

(z+1/2)° — (2 +1/25) -2 (x4 1/2)° — (23 + 1/363)2

(z+1/2)° + (23 + 1/a3) (z+1/z)° + (x3+1/x3)
<(x+1/x) (% +1/a3 )(x—i—l/x

+ (2% + 1/x3)>

(z+1/3)° + (23 + 1/23)
= (z+1/2)° - (z* +1/2°)
= 3(z+1/2)

2

-1
L(z+1/z)= = =0, z2>0=>z=1

As x + 1/x approaches oo as * — +00 and x — 07, there is a minimum and
the only candidate is = 1. The minimum value is 3(1 4+ 1/1) = 6.

B2. Givena point (a,b) with 0 < b < a, determine the minimum perimeter of
a triangle with one vertex at (a,b) one on the x-axis and one on the line y = x.
You may assume that a triangle with minimum perimeter exists.

Solution. Note that the distance of any point (d,d) on the line y = = to the
point (a, b) is the same as the distance of (d,d) to (b, a), the reflection of (a,b)
in the line y = x. Also, the distance of any point (¢,0) to (a,b) is the same
as the distance of (¢,0) to (a,—b), the reflection of (a,b) in the z-axis. Thus,
the perimeter of the triangle (d,d), (a,b), (¢,0) is the same as the broken line
segment with vertices (a,—b), (¢,0), (d,d), (b,a). The length of this broken
line segment is no greater than the distance between the endpoints (b, a) and

(a, —b), namely \/(b —a)’ + (a+b)® = \/2(@®+b%). We can choose ¢ and
d so that the broken segment (a,=b), (c,0), (d,d), (b,a) is straight. Thus,

/2 (a? + b?) is the minimum possible perimeter.

B3. Let H be the unit hemisphere {(z,y,2) : 22 + 42 + 22 = 1,2 > 0}, C the
unit circle {(z,y,0) : 22 + y? = 1}, and P the regular pentagon inscribed in C'.
Determine the surface area of that portion of H lying over the planar region
inside P, and write your answer in the form Asina + Bcos (8, where A, B, «, 3
are real numbers.



Solution. The desired area A is % the area of the sphere minus 5 polar caps
that each extends an angle of £ from its pole. Thus,

1 2 %
A = = 47r—5/ / sin ¢ dpdl
2 o Jo

= 27r75'7r<fcos%+1>

= 737r+57rcos% = *37TSing +57rcosg.

B4. Find necessary and sufficient conditions on positive integers m and n so
that

mn—1

Z (_1)U/mj+U/nj =0.

=0

Solution. The number of terms in the sum is mn which is odd if both m and
n are odd. Thus, the sum (consisting of 1s and —1s) cannot be zero if both m
and n are odd. Suppose that m + n is odd (e.g., m is even and n is odd). In
this case we claim

(Li/m] + [i/n]) + (l(mn =1 =) /m| + [(mn =1 —i) /n]) =m+n—-2 (1)

which is odd, so that for 0 < i < %mn, the i-th term and the (mn — 1 —4)-th
term cancel in the sum which is then 0. Note that

li/m] + [(mn—1—1i)/m] = [i/m]+ [n—(1+1i)/m]
= n+[i/m|+ |- 1 +1i)/m]
= n+(li/m|+|—i/m—1/m])
= n-—1, (2)

and similarly
li/n|+ [(mn—1—14)/n] =m—1. (3)

Adding (2) and (3), we get (1). Suppose that m and n are both even, say
m = 2m’ and n = 2n/. Then, for any positive integer 7,

5= =[] o [3)= el =[5 ]




Thus the sum, say S (m,n), is given by twice the sum over even indices:

mn—1 %mn 1
S (m,n) = Z (=1)L/mi+li/n) — 9 Z 1)L20'/m]-+12¢'/n]
=0 ' =0
1
2mn 2m/n’—1
Z Ll /|41 ] o Z LZ /m' |+ /|
1'=0 =0
m'n’—1 2m’n’—1
- 9 ( )L'L Jm' |+ /n’ ] +2 Z |_z /m/ |+ i /n ]
/=0 i'=m'n’
m'n’—1
= 929 (m’, n’) +2 Z (-1) L(#"+m/n’) /m/ |+ (' +m'n") /0]
=0

— 25 (m',n) (1 + (—1)"’*’”’) .

Now, if 1 + (—1)" " =0 < n/ +m’ is odd, in which case S (m/,n’) = 0 and
S (m,n) = 0. Thus, S(m,n) =0« S(m',n') =0 < ... & the highest power
of 2 which divides m differs from the highest power of 2 which divides n.

B5. Let NV be the positive integer with 1998 decimal digits, all of them 1; that
is,

N =1111---11.
Find the thousandth digit after the decimal point of v/N.

Solution. Note that 9N = 1111---11 = 10'99% — 1. Thus,

VN = & 13/101998 1 = 11099,/1 — 101998

9
1
— %10999 (1 _ 10—1998) 2

‘We have the binomial series

1 1l_q Ll_1\(L_9
(1—x)2:1—%x+2(22' )x2—2<2 3)!(2 )x3+---
1
valid for |z| < 1. The remainder term in (1 — 2)2 =1 — 22 + Ry (z) satisfies
d? : ’ 11 _3|a?
B2 ()] < max W((l_t)z) o= Rax ;GE-N0a-972 5




3
For z = 107199 (1 —2)"2 <2 and so |Ry (z)| < 2% < 110721998 Thus,

110999 1 110999

< %10999%1:2 < 1_1210999—2-1998 — 10—2998'

(1—x)% - (1-3a2)

Now
%10999 (1 . %x) _ %10999 (1 . %10—1998) _ %10999 . %10—999
= .33 x10%% — 166 x 10799
— 37733734 (333 — .16G) x 1079
= 377%3.3""3 4 166 x 10799
= 3"73.3""3168.
Thus, the 1000-th digit to the right of the decimal is 1.

B6. Prove that, for any integers a, b, ¢, there exists a positive integer n such
that v/n3 + an? 4 bn + c is not an integer.

Solution. We try to write the assumed perfect square n? + an? + bn + c in the
form (n3/2 +dn'/? + f)2 :

2
nd+an®+bnt+c = <n3/2+dn1/2+f>

— P4 20%d+2(Vn)’ f+nd® +2dv/nf + f2.

Choosing d = %a, and f = 41, we then have, for n sufficiently large,
2 2
(n3/2+%an1/2—1) <n3+an2+bn+c<(n?’/z—i—%anl/z—i—l) .

If n is a perfect square, say n = m?, then the extreme left and right are
perfect squares and there is only one perfect square between them, namely
2 . .

(n3/2 + La n'/?)”. Hence, if n = m? and n® + an® 4 bn + ¢ is a perfect square,

then
2
n® +an® +bn+c= <n3/2 +%a n1/2> :n3+an2+ia2n.
or
m® 4+ am* +bm* +c=mb +am* + iazm2
or
bm? +c = iazm2
For this to hold for all sufficiently large integers m, we must have ¢ = 0 and
b= %az. Thus,
3 2 3/2 1/2)2 ay)?
et e (7o) = ({0 )

which is not a perfect square, unless n is a perfect square.



