Putnam 1998 (Problems and Solutions)

A1. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube.
Solution. Consider the cross section obtained by slicing vertically by a plane that contains a diagonal of the base of the cube. We obtain a rectangle of height $s=$ side-length of the cube and width $\sqrt{2} s$. By similar triangles

$$
\begin{aligned}
\frac{3}{1} & =\frac{s}{1-\frac{1}{2} \sqrt{2} s} \Rightarrow \\
s & =\frac{6}{3 \sqrt{2}+2}=\frac{6(3 \sqrt{2}-2)}{(3 \sqrt{2}+2)(3 \sqrt{2}-2)}=\frac{9 \sqrt{2}-6}{7}
\end{aligned}
$$

A2. Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be the area of the region lying below s and above the x-axis and let B be the area of the region lying to the right of the y-axis and to the left of s. Prove that $A+B$ depends only on the arc length of s and not on the position of s.

Solution. Let s run from θ_{1} to θ_{2}. Then

$$
\begin{aligned}
A & =\int_{\cos \theta_{2}}^{\cos \theta_{1}} \sqrt{1-x^{2}} d x=-\int_{\theta_{2}}^{\theta_{1}} \sin ^{2} \theta d \theta \\
B & =\int_{\sin \theta_{1}}^{\sin \theta_{2}} \sqrt{1-y^{2}} d y=\int_{\theta_{1}}^{\theta_{2}} \cos ^{2} \theta d \theta
\end{aligned}
$$

Note that

$$
\frac{\partial}{\partial \theta_{1}}(A+B)=-\sin ^{2} \theta_{1}-\cos ^{2} \theta_{1}=-1 \Rightarrow A+B=-\theta_{1}+f\left(\theta_{2}\right)
$$

while

$$
\frac{\partial}{\partial \theta_{2}}(A+B)=\sin ^{2} \theta_{2}+\cos ^{2} \theta_{2}=1 \Rightarrow A+B=\theta_{2}+g\left(\theta_{1}\right)
$$

Hence, since $A+B=0$ when $\theta_{1}=\theta_{2}$,

$$
A+B=\theta_{2}-\theta_{1}+C=\theta_{2}-\theta_{1}
$$

A3. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

Solution. Assume otherwise. Then

$$
f(x) \cdot f^{\prime}(x) \cdot f^{\prime \prime}(x) \cdot f^{\prime \prime \prime}(x)<0
$$

In particular, each of the factors is never zero. By replacing $f(x)$ by $-f(x)$ if necessary, we may assume that $f(x)>0$, and by replacing $f(x)$ by $f(-x)$ if necessary, we may assume that $f^{\prime}(x)>0$. There are two cases:

Case 1: $f^{\prime \prime}(x)>0$ and $f^{\prime \prime \prime}(x)<0$.
Since $f^{\prime \prime \prime}(x)<0$, the graph of $f^{\prime}(x)$ is concave down and hence the graph of $f^{\prime}(x)$ lies below its tangent line at $x=0$. Thus,

$$
f^{\prime}(x) \leq f^{\prime}(0)+f^{\prime \prime}(0) x \text { and } f^{\prime}\left(\frac{-f^{\prime}(0)}{f^{\prime \prime}(0)}\right) \leq 0 \text { (contradiction) }
$$

Case 2: $f^{\prime \prime}(x)<0$ and $f^{\prime \prime \prime}(x)>0$.
Since $f^{\prime \prime}(x)<0$, the graph of $f(x)$ is concave down and hence the graph of $f(x)$ lies below its tangent line at $x=0$. Thus,

$$
f(x) \leq f(0)+f^{\prime}(0) x \text { and } f\left(\frac{-f(0)}{f^{\prime}(0)}\right) \leq 0 \text { (contradiction). }
$$

A4. Let $A_{1}=0$ and let $A_{2}=1$. For $n>2$, the number A_{n} is defined by concatenating the decimal expansions of A_{n-1} and A_{n-2} from left to right. For example $A_{3}=A_{2} A_{1}=10, A_{4}=A_{3} A_{2}=101, A_{5}=A_{4} A_{3}=10110$, and so forth. Determine all n such that 11 divides A_{n}.

Solution. Since $10^{n} \equiv(-1)^{n} \bmod 11$, an integer is divisible by 11 iff the alternating sum of its digits (from right to left so that the first term is positive) is 0 $\bmod 11$. Let e_{n} be the alternating sum of the digits $\bmod 11$ of A_{n} from right to left, and let F_{n} be the number digits in A_{n}. Of course F_{n} is just the Fibonacci sequence. Note that $e_{n+2}=(-1)^{F_{n}} e_{n+1}+e_{n}$. We have $F_{n+2}=F_{n+1}+F_{n}$ and $F_{1}=1$, and $F_{2}=1$, we see that F_{n} is even iff n is divisible by 3 . We have (all $\bmod 11)$

$$
\begin{aligned}
e_{n+2} & =(-1)^{F_{n}} e_{n+1}+e_{n} \\
e_{3 k+3} & =(-1)^{F_{3 k+1}} e_{3 k+2}+e_{3 k+1}=-e_{3 k+2}+e_{3 k+1} \\
e_{3 k+4} & =(-1)^{F_{3 k+2}} e_{3 k+3}+e_{3 k+2}=-e_{3 k+3}+e_{3 k+2}=-\left(-e_{3 k+2}+e_{3 k+1}\right)+e_{3 k+2} \\
& =-e_{3 k+1}+2 e_{3 k+2} \\
e_{3 k+5} & =(-1)^{F_{3 k+3}} e_{3 k+4}+e_{3 k+3}=e_{3 k+4}+e_{3 k+3}=\left(-e_{3 k+1}+2 e_{3 k+2}\right)+\left(-e_{3 k+2}+e_{3 k+1}\right) \\
& =e_{3 k+2} \\
e_{3 k+6} & =(-1)^{F_{3 k+4}} e_{3 k+5}+e_{3 k+4}=-e_{3 k+5}+e_{3 k+4}=-e_{3 k+2}+\left(-e_{3 k+1}+2 e_{3 k+2}\right) \\
& =e_{3 k+2}-e_{3 k+1} \\
e_{3 k+7} & =(-1)^{F_{3 k+5}} e_{3 k+6}+e_{3 k+5}=-e_{3 k+6}+e_{3 k+5}=-\left(e_{3 k+2}-e_{3 k+1}\right)+e_{3 k+2}=e_{3 k+1} \\
e_{3 k+8} & =(-1)^{F_{3 k+6}} e_{3 k+7}+e_{3 k+6}=e_{3 k+7}+e_{3 k+6}=e_{3 k+1}+e_{3 k+2}-e_{3 k+1}=e_{3 k+2} \\
e_{3 k+9} & =(-1)^{F_{3 k+7}} e_{3 k+8}+e_{3 k+7}=-e_{3 k+8}+e_{3 k+7}=-e_{3 k+2}+e_{3 k+1}=e_{3 k+3}
\end{aligned}
$$

Thus, e_{n} is periodic of period 6 . Now

$$
\begin{aligned}
& e_{1}=0, e_{2}=1, e_{3}=-e_{2}+e_{1}=-1 \\
& e_{4}=-e_{1}+2 e_{2}=2, e_{5}=e_{2}=1, e_{6}=e_{2}-e_{1}=1
\end{aligned}
$$

Thus, e_{n} is divisible by 11 iff $n \equiv 1 \bmod 6$.
A5. Let \mathcal{F} be a finite collection of open disks in \mathbb{R}^{2} whose union contains a set $E \subseteq \mathbb{R}^{2}$. Prove that there is a pairwise disjoint collection D_{1}, \ldots, D_{n} in \mathcal{F} such that

$$
\bigcup_{j=1}^{n} 3 D_{j} \supseteq E
$$

Here, if D is the disc of radius r and center P, then $3 D$ is the disc of radius $3 r$ and center P.

Solution. Note that if D and D^{\prime} are open disks of radius r and r^{\prime}, with $r \leq r^{\prime}$, then $D \cap D^{\prime} \neq \phi \Rightarrow 3 D^{\prime} \supseteq D$. Starting with a largest disk, color it (say, red), and remove the disks which intersect it. The 3-fold enlargement of the colored disk together with the remaining disks will still cover E, by the above. Then color a largest remaining uncolored disk, and remove the remaining uncolored disks which intersect it. Continuing, the process eventually stops, since there are a finite number of disks. Moreover, at each stage the 3 -fold enlargements of the colored disks and the remaining uncolored disks cover E. At the end of the process, no uncolored disks remain, and the 3-fold enlargements of the colored disks cover E. The colored disks are pairwise disjoint by construction.

A6. Let A, B and C denote distinct points with integer coordinates in \mathbb{R}^{2}. Prove that if

$$
(|A B|+|B C|)^{2}<8 \cdot[A B C]+1
$$

then A, B, C are three vertices of a square. Here $|X Y|$ is the length of the segment $X Y$ and $[A B C]$ is the area of triangle $A B C$.

Solution. We have $[A B C]=\frac{1}{2}|A B||B C| \sin \theta$, where θ is the angle of triangle $A B C$ at vertex B. Thus, $4 \cdot[A B C] \leq 2|A B||B C|$ with equality only if $\theta=90^{\circ}$. Also $2|A B||B C| \leq|A B|^{2}+|B C|^{2}$ with equality only if $|A B|=|B C|$, since $0 \leq(|A B|-|B C|)^{2}$. Hence,

$$
\begin{aligned}
8 \cdot[A B C] & \leq 4 \cdot[A B C]+2|A B||B C| \\
& \leq 4 \cdot[A B C]+|A B|^{2}+|B C|^{2} \\
& \leq 2|A B||B C|+|A B|^{2}+|B C|^{2} \\
& =(|A B|+|B C|)^{2}<8 \cdot[A B C]+1
\end{aligned}
$$

The intermediate expression $4 \cdot[A B C]+|A B|^{2}+|B C|^{2}$ is an integer, since $2 \cdot[A B C]$ is a determinant of a 2×2 matrix with integer coefficients. Thus, we have all equalities, and $\theta=90^{\circ}$ and $|A B|=|B C|$.

B1. Find the minimum value of

$$
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}
$$

Solution. We have

$$
\begin{aligned}
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} & =\frac{(x+1 / x)^{6}-\left(x^{3}+1 / x^{3}\right)^{2}}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} \\
& =\frac{\left((x+1 / x)^{3}-\left(x^{3}+1 / x^{3}\right)\right)\left((x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)\right)}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)} \\
& =(x+1 / x)^{3}-\left(x^{3}+1 / x^{3}\right) \\
& =3(x+1 / x) \\
\frac{d}{d x}(x+1 / x) & =\frac{x^{2}-1}{x^{2}}=0, x>0 \Rightarrow x=1 .
\end{aligned}
$$

As $x+1 / x$ approaches ∞ as $x \rightarrow+\infty$ and $x \rightarrow 0^{+}$, there is a minimum and the only candidate is $x=1$. The minimum value is $3(1+1 / 1)=6$.

B2. Given a point (a, b) with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at (a, b) one on the x -axis and one on the line $y=x$. You may assume that a triangle with minimum perimeter exists.

Solution. Note that the distance of any point (d, d) on the line $y=x$ to the point (a, b) is the same as the distance of (d, d) to (b, a), the reflection of (a, b) in the line $y=x$. Also, the distance of any point $(c, 0)$ to (a, b) is the same as the distance of $(c, 0)$ to $(a,-b)$, the reflection of (a, b) in the x-axis. Thus, the perimeter of the triangle $(d, d),(a, b),(c, 0)$ is the same as the broken line segment with vertices $(a,-b),(c, 0),(d, d),(b, a)$. The length of this broken line segment is no greater than the distance between the endpoints (b, a) and $(a,-b)$, namely $\sqrt{(b-a)^{2}+(a+b)^{2}}=\sqrt{2\left(a^{2}+b^{2}\right)}$. We can choose c and d so that the broken segment $(a,-b),(c, 0),(d, d),(b, a)$ is straight. Thus, $\sqrt{2\left(a^{2}+b^{2}\right)}$ is the minimum possible perimeter.

B3. Let H be the unit hemisphere $\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}, C$ the unit circle $\left\{(x, y, 0): x^{2}+y^{2}=1\right\}$, and P the regular pentagon inscribed in C. Determine the surface area of that portion of H lying over the planar region inside P, and write your answer in the form $A \sin \alpha+B \cos \beta$, where A, B, α, β are real numbers.

Solution. The desired area A is $\frac{1}{2}$ the area of the sphere minus 5 polar caps that each extends an angle of $\frac{\pi}{5}$ from its pole. Thus,

$$
\begin{aligned}
A & =\frac{1}{2}\left(4 \pi-5 \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{5}} \sin \varphi d \varphi d \theta\right) \\
& =2 \pi-5 \cdot \pi\left(-\cos \frac{\pi}{5}+1\right) \\
& =-3 \pi+5 \pi \cos \frac{\pi}{5}=-3 \pi \sin \frac{\pi}{2}+5 \pi \cos \frac{\pi}{5}
\end{aligned}
$$

B4. Find necessary and sufficient conditions on positive integers m and n so that

$$
\sum_{i=0}^{m n-1}(-1)^{\lfloor i / m\rfloor+\lfloor i / n\rfloor}=0
$$

Solution. The number of terms in the sum is $m n$ which is odd if both m and n are odd. Thus, the sum (consisting of 1 s and -1 s) cannot be zero if both m and n are odd. Suppose that $m+n$ is odd (e.g., m is even and n is odd). In this case we claim

$$
\begin{equation*}
(\lfloor i / m\rfloor+\lfloor i / n\rfloor)+(\lfloor(m n-1-i) / m\rfloor+\lfloor(m n-1-i) / n\rfloor)=m+n-2 \tag{1}
\end{equation*}
$$

which is odd, so that for $0 \leq i \leq \frac{1}{2} m n$, the i-th term and the ($m n-1-i$)-th term cancel in the sum which is then 0 . Note that

$$
\begin{align*}
\lfloor i / m\rfloor+\lfloor(m n-1-i) / m\rfloor & =\lfloor i / m\rfloor+\lfloor n-(1+i) / m\rfloor \\
& =n+\lfloor i / m\rfloor+\lfloor-(1+i) / m\rfloor \\
& =n+(\lfloor i / m\rfloor+\lfloor-i / m-1 / m\rfloor) \\
& =n-1, \tag{2}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\lfloor i / n\rfloor+\lfloor(m n-1-i) / n\rfloor=m-1 \tag{3}
\end{equation*}
$$

Adding (2) and (3), we get (1). Suppose that m and n are both even, say $m=2 m^{\prime}$ and $n=2 n^{\prime}$. Then, for any positive integer i,

$$
\left\lfloor\frac{2 i}{m}\right\rfloor=\left\lfloor\frac{2 i}{2 m^{\prime}}\right\rfloor=\left\lfloor\frac{2 i+1}{2 m^{\prime}}\right\rfloor \text { and }\left\lfloor\frac{2 i}{n}\right\rfloor=\left\lfloor\frac{2 i}{2 n^{\prime}}\right\rfloor=\left\lfloor\frac{2 i+1}{2 n^{\prime}}\right\rfloor
$$

Thus the sum, say $S(m, n)$, is given by twice the sum over even indices:

$$
\begin{aligned}
S(m, n) & =\sum_{i=0}^{m n-1}(-1)^{\lfloor i / m\rfloor+\lfloor i / n\rfloor}=2 \sum_{i^{\prime}=0}^{\frac{1}{2} m n-1}(-1)^{\left\lfloor 2 i^{\prime} / m\right\rfloor+\left\lfloor 2 i^{\prime} / n\right\rfloor} \\
& =2 \sum_{i^{\prime}=0}^{\frac{1}{2} m n-1}(-1)^{\left\lfloor i^{\prime} / m^{\prime}\right\rfloor+\left\lfloor i^{\prime} / n^{\prime}\right\rfloor}=2 \sum_{i^{\prime}=0}^{2 m^{\prime} n^{\prime}-1}(-1)^{\left\lfloor i^{\prime} / m^{\prime}\right\rfloor+\left\lfloor i^{\prime} / n^{\prime}\right\rfloor} \\
& =2 \sum_{i^{\prime}=0}^{m^{\prime} n^{\prime}-1}(-1)^{\left\lfloor i^{\prime} / m^{\prime}\right\rfloor+\left\lfloor i^{\prime} / n^{\prime}\right\rfloor}+2 \sum_{i^{\prime}=m^{\prime} n^{\prime}}^{2 m^{\prime} n^{\prime}-1}(-1)^{\left\lfloor i^{\prime} / m^{\prime}\right\rfloor+\left\lfloor i^{\prime} / n^{\prime}\right\rfloor} \\
& =2 S\left(m^{\prime}, n^{\prime}\right)+2 \sum_{i^{\prime}=0}^{m^{\prime} n^{\prime}-1}(-1)^{\left\lfloor\left(i^{\prime}+m^{\prime} n^{\prime}\right) / m^{\prime}\right\rfloor+\left\lfloor\left(i^{\prime}+m^{\prime} n^{\prime}\right) / n^{\prime}\right\rfloor} \\
& =2 S\left(m^{\prime}, n^{\prime}\right)\left(1+(-1)^{n^{\prime}+m^{\prime}}\right)
\end{aligned}
$$

Now, if $1+(-1)^{n^{\prime}+m^{\prime}}=0 \Leftrightarrow n^{\prime}+m^{\prime}$ is odd, in which case $S\left(m^{\prime}, n^{\prime}\right)=0$ and $S(m, n)=0$. Thus, $S(m, n)=0 \Leftrightarrow S\left(m^{\prime}, n^{\prime}\right)=0 \Leftrightarrow \ldots \Leftrightarrow$ the highest power of 2 which divides m differs from the highest power of 2 which divides n.

B5. Let N be the positive integer with 1998 decimal digits, all of them 1 ; that is,

$$
N=1111 \cdots 11
$$

Find the thousandth digit after the decimal point of \sqrt{N}.
Solution. Note that $9 N=1111 \cdots 11=10^{1998}-1$. Thus,

$$
\begin{aligned}
\sqrt{N} & =\sqrt{\frac{10^{1998}-1}{9}}=\frac{1}{3} \sqrt{10^{1998}-1}=\frac{1}{3} 10^{999} \sqrt{1-10^{-1998}} \\
& =\frac{1}{3} 10^{999}\left(1-10^{-1998}\right)^{\frac{1}{2}}
\end{aligned}
$$

We have the binomial series

$$
(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} x^{2}-\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} x^{3}+\cdots
$$

valid for $|x|<1$. The remainder term in $(1-x)^{\frac{1}{2}}=1-\frac{1}{2} x+R_{2}(x)$ satisfies

$$
\begin{aligned}
\left|R_{2}(x)\right| & \leq \max _{0 \leq t \leq x}\left|\frac{d^{2}}{d t^{2}}\left((1-t)^{\frac{1}{2}}\right)\right| \frac{x^{2}}{2!}=\max _{0 \leq t \leq x}\left|\frac{1}{2}\left(\frac{1}{2}-1\right)(1-t)^{-\frac{3}{2}}\right| \frac{x^{2}}{2!} \\
& =\left|\frac{1}{4}(1-x)^{-\frac{3}{2}}\right| \frac{x^{2}}{2!}
\end{aligned}
$$

For $x=10^{-1998},(1-x)^{-\frac{3}{2}} \leq 2$ and so $\left|R_{2}(x)\right| \leq \frac{1}{4} x^{2} \leq \frac{1}{4} 10^{-2 \cdot 1998}$. Thus,

$$
\begin{aligned}
& \left|\sqrt{N}-\frac{1}{3} 10^{999}\left(1-\frac{1}{2} x\right)\right|=\frac{1}{3} 10^{999}\left|(1-x)^{\frac{1}{2}}-\left(1-\frac{1}{2} x\right)\right| \\
\leq & \frac{1}{3} 10^{999} \frac{1}{4} x^{2} \leq \frac{1}{12} 10^{999-2 \cdot 1998}=10^{-2998} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{1}{3} 10^{999}\left(1-\frac{1}{2} x\right) & =\frac{1}{3} 10^{999}\left(1-\frac{1}{2} 10^{-1998}\right)=\frac{1}{3} 10^{999}-\frac{1}{6} 10^{-999} \\
& =.3 \overline{3} \times 10^{999}-.16 \overline{6} \times 10^{-999} \\
& =3^{999} 3.3^{999} 3+(.33 \overline{3}-.16 \overline{6}) \times 10^{-999} \\
& =3^{999} 3.3^{999} 3+.16 \overline{6} \times 10^{-999} \\
& =3^{999} \cdot 3.3^{999} 316 \overline{6} .
\end{aligned}
$$

Thus, the $1000-$ th digit to the right of the decimal is 1 .
B6. Prove that, for any integers a, b, c, there exists a positive integer n such that $\sqrt{n^{3}+a n^{2}+b n+c}$ is not an integer.
Solution. We try to write the assumed perfect square $n^{3}+a n^{2}+b n+c$ in the form $\left(n^{3 / 2}+d n^{1 / 2}+f\right)^{2}$:

$$
\begin{aligned}
n^{3}+a n^{2}+b n+c & =\left(n^{3 / 2}+d n^{1 / 2}+f\right)^{2} \\
& =n^{3}+2 n^{2} d+2(\sqrt{n})^{3} f+n d^{2}+2 d \sqrt{n} f+f^{2} .
\end{aligned}
$$

Choosing $d=\frac{1}{2} a$, and $f= \pm 1$, we then have, for n sufficiently large,

$$
\left(n^{3 / 2}+\frac{1}{2} a n^{1 / 2}-1\right)^{2}<n^{3}+a n^{2}+b n+c<\left(n^{3 / 2}+\frac{1}{2} a n^{1 / 2}+1\right)^{2} .
$$

If n is a perfect square, say $n=m^{2}$, then the extreme left and right are perfect squares and there is only one perfect square between them, namely $\left(n^{3 / 2}+\frac{1}{2} a n^{1 / 2}\right)^{2}$. Hence, if $n=m^{2}$ and $n^{3}+a n^{2}+b n+c$ is a perfect square, then

$$
n^{3}+a n^{2}+b n+c=\left(n^{3 / 2}+\frac{1}{2} a n^{1 / 2}\right)^{2}=n^{3}+a n^{2}+\frac{1}{4} a^{2} n .
$$

or

$$
m^{6}+a m^{4}+b m^{2}+c=m^{6}+a m^{4}+\frac{1}{4} a^{2} m^{2}
$$

or

$$
b m^{2}+c=\frac{1}{4} a^{2} m^{2}
$$

For this to hold for all sufficiently large integers m, we must have $c=0$ and $b=\frac{1}{4} a^{2}$. Thus,

$$
n^{3}+a n^{2}+b n+c=\left(n^{3 / 2}+\frac{1}{2} a n^{1 / 2}\right)^{2}=\left(\sqrt{n}\left(n+\frac{a}{2}\right)\right)^{2},
$$

which is not a perfect square, unless n is a perfect square.

