
Robert Swartz
www.mathapplets.net
Towers of Chicago
Copyright 2024

This program solves the Towers of Chicago puzzle. In this problem, a set of discs are
to be moved from one peg to another while observing the following 4 rules:
(1) Only one disc can be moved at a time, (2) A larger disc can't be placed on top of a
smaller one, (3) Auxiliary pegs may be used for the temporary placement of the discs, and
(4) The task should be completed in a minimum number of moves.

This program can display up to 50 discs by 10 pegs with a default window size of
1300 x 1000. It can also print the moves for up to 1000 discs by 100 pegs. The applet
can handle up to 20 rotating colors; the initial and final pegs are displayed in green and
red, respectively. The discs are displayed either round or sharp. When the applet is
paused, the move button can be used to step through the moves.

The traditional version of the Towers of Chicago makes use of only 3 pegs: the initial peg,
the final peg, and 1 auxiliary peg. However, the multipeg version makes use of any
number of pegs: the initial peg, the final peg, and 2 or more auxiliary pegs. As the number
of pegs is increased, while keeping the number of discs constant, the number of moves
required usually decreases.

The optimal solution for the 3 peg problem is well known: recursively move n-1 discs
from the initial peg to the auxiliary peg, then move the remaining disc to the final peg, then
move the first n-1 discs from the auxiliary peg to the final peg. This algorithm results in
2^n-1 moves.

The presumed optimal Frame-Stewart algorithm that this program uses for n discs and
p pegs is as follows: recursively move k discs from the initial peg to an available auxiliary
peg using the p peg subalgorithm, then move the remaining n-k discs from the initial peg
to the final peg using the p-1 peg subalgorithm, then move the first k discs from the
auxiliary peg to the final peg using the p peg subalgorithm. The program uses dynamic
programming to find the k values. The k values are calculated to make the number of
moves minimal.

This program can find different optimal solutions for each combination of discs and pegs
(where pegs are greater than 3). This is accomplished through 2 kinds of randomization,
Scramble k Values and Scramble Discs. Each of these uses a random number seed (an
integer from 000 to 999). Scramble k Values uses a different k value for each recursive
instance of a particular subalgorithm; if this isn't selected, the Random k Seed sets
constant k values for each subalgorithm. Scramble Discs simply shuffles the discs around
the auxiliary pegs.

